Mit Donorzentren versehener korbförmiger Molekülhohlraum – Darstellung, Struktur, Eigenschaften

Jörg Breitenbach^a, Kari Rissanen^b, Ute U. Wolf^c und Fritz Vögtle^{*a}

Institut für Organische Chemie und Biochemie der Universität Bonn^a, Gerhard-Domagk-Straße 1, W-5300 Bonn 1, F.R.G.

Department of Chemistry, University of Jyväskylä^b, Kyllikinkatu 1–3, SF-40100 Jyväskylä, Finland

Bayer AG^c, W-4047 Dormagen, F.R.G.

Eingegangen am 21. März 1991

Key Words: Basket-shaped molecules / Pyridine derivatives / Macrocyclic compounds / Heterocyclic compounds / Supramolecular chemistry

Basket-shaped Molecular Cavity-Containing Donor Centres - Synthesis, Structure, Properties

The macrocyclic basket-shaped molecule 2, composed of three 4-donor-substituted pyridine units, is synthesized by cyclisation of the chloromethyl compound 7 with sulfonamide 8. The X-ray structure analysis of 2 gives an impression of the shape of the molecular basket. Furthermore it demonstrates that the toluenesulfonamide residues interlink, creating dimeric units of 2 in the crystal.

Frühere Versuche, korbförmige Molekülhohlräume mit rigider Struktur herzustellen, führten uns zu der makrooligocyclischen Verbindung 1¹⁾. Dabei wurde der obere "Korbrand" durch Ausbildung eines Hexalactams (Knüpfung von C–N-Bindungen) zusammengesetzt¹⁾. Durch Variation der Bodenplatte solcher konkaven Hohlräume konnten wir die Tiefe und Breite des aufgespannten Hohlraumes variieren, da beide Größen vom Radius des Boden-Spacers und der Ringgröße des Korbrandes abhängen¹⁾.

Das Interesse für solche konkaven Molekülstrukturen gründet sich darauf, daß sie als potentielle Wirte für polare oder unpolare Gäste diese solubilisieren oder partiell schützen könnten²). Darüber hinaus sollten sie sich wie die konischen Cyclodextrin-Hohlräume als Bindungsstellen für katalytische Zwecke nutzen lassen.

Es schien möglich, die Ringgröße im Korbrand zu verringern und darüber hinaus starke Donorzentren so anzubringen, daß sie am oberen Korbrand annähernd konvergent angeordnet sind und Gäste möglicherweise kooperativ - z. B. über mehrfache H-Brücken - binden könnten. Als Donoren wählten wir 2,6-Dialkyl-substituierte Pyridine, die in 4-Position + M-Substituenten, vergleichbar dem 4-Methoxypyridin, tragen³.

1. Darstellung

Die Darstellung von 2 gelingt in einer Cyclisierungsreaktion ausgehend von dem Hexachlorid 7 und dem Toluolsulfonamid-natriumsalz 8^{4} in Dimethylformamid. Die Anwendungsbreite der Cyclisierung mit Hilfe von 8 konnte somit über die bisherige Verwendung zur Darstellung von [3.3]Cyclophanen und ihrer trimeren Analogen ausgedehnt werden⁵. Die Cyclisierung beinhaltet eine sechsfache intramolekulare Bindungsknüpfung; der Makrocyclus 2 entsteht mit 23% Ausbeute. Die Reinigung erfolgt durch einfache Umkristallisation.

Der Hexaester 5 wurde durch Umsetzung von 1,3,5-Tris-(brommethyl)benzol (4)⁶⁾ mit Chelidamsäure-dimethylester (3)⁷⁾ durch nucleophile Substitution in Aceton mit 76% Ausbeute erhalten. Die anschließende Reduktion zum Hexaalkohol 6 erfolgte mit NaBH₄ mit 69% Ausbeute. Im Verlauf der Syntheseoptimierung zeigte sich, daß eine Reinigung des Hexaalkohols 6 für die weitere Reaktionsfolge nicht nötig ist, da die Umsetzung des Rohprodukts mit Thionylchlorid zum Hexachlorid 7 mit höherer Ausbeute (61%) verläuft.

2. Röntgenstrukturanalyse

Die Röntgenkristallstrukturanalyse bestätigt die angestrebte korbförmige Gestalt des Makrocyclus 2. Besonderes Augenmerk galt den für die Wirt-Gast-Eigenschaften wichtigen Parametern, die aus Abb. 1 ersichtlich sind.

Die Kristallstruktur macht auch verständlich, warum Versuche, den Molekülhohlraum von 2 zur Aufnahme organischer Gastmoleküle zu nutzen, bislang scheiterten. Der 18-gliedrige Ring des Korbrandes bietet eine zu kleine Öff-

CH3

nung (Abb. 2), so daß organische Moleküle nicht in das "Korbinnere" gelangen können.

Die Toluolsulfonamidgruppen von 2 sind annähernd gleichartig nach außen gerichtet und grenzen dadurch einen weiteren "Teilhohlraum" ab, der drei Donor-verstärkte Pyridinstickstoffatome im Inneren enthält (Abb. 2).

Abb. 2. a) Seitenansicht: b) Aufsicht des Korbmoleküls 2 (van-der-Waals-Radius-Plot der Röntgenstruktur)

Ein besonderes Merkmal der Struktur ist die Verbindung zweier Korbmoleküle (A) unter Bildung zweier verschiedener "dimerer Einheiten" (A – A und B – B) im Kristall. Die Dimere sind jeweils durch Wasserstoffbrücken über ein Wassermolekül zwischen den Sauerstoffatomen der Sulfonylgruppen verbunden. Der Unterschied der beiden Dimeren-Typen liegt in den Distanzen im Korbrand (Abb. 1). Auffallend ist die annähernd dreieckige Struktur der Öffnung des Hohlraumes; sie ist zu einer Seite hin stark verjüngt. Bindungslängen und -winkel zeigen keine ungewöhnlichen Abweichungen von der Norm.

Abb. 1. Abstände im oberen Korbrand [Å] und Höhe h von 2

Abb. 3. A-A-Dimer des "Monomers" 2; zur Verdeutlichung wurden die alternierenden Toluolsulfonamidgruppen schraffiert (van der Waals-Radius-Plot der Röntgenstruktur): nur vier der sechs Toluolsulfonamidgruppen sind zu erkennen, da zwei verdeckt liegen

Die Markierung der van der Waals-Radien im Dimer A-A (Abb. 3) zeigt deutlich die alternierende Verzahnung der Toluolsulfonamid-Gruppen. Diese "Dimerenbildung" im Kristall schirmt den Eingang des Hohlraumes zusätzlich ab und wird durch die bemerkenswert komplementäre Struktur der Monomere von 2 ermöglicht: ein unerwarteter Aspekt der molekularen Erkennung im Kristall.

3. ¹H-NMR-Studien

Die ¹H-NMR-Daten von 2 sind in Tab. 1 wiedergegeben. Die Hochfeldverschiebung der Signale ($\Delta \delta = 1.27$) der Pyridinprotonen von 2 ($\delta = 6.62$) im Vergleich zur offenkettigen Ausgangsverbindung 7 ($\delta = 7.89$) im gleichen Lösungsmittel ist signifikant. Der Unterschied dürfte auf die Abschirmung der Pyridinprotonen in 2 durch den Anisotropieeffekt der Benzol-Bodenplatte zurückzuführen sein.

K. R. dankt der Finnischen Akademie für Sachmittel und Dr. D. Watkin für die neue Version des CRYSTALS-Programms. Der Deutschen Forschungsgemeinschaft sind wir für die Unterstützung des Projekts dankbar.

Experimenteller Teil

¹H-NMR: Bruker WH-200 (200 MHz). - ¹³C-NMR: WH-90 (20.64 MHz). - Schmp.: Kofler-Mikroskop-Heiztisch. - MS: MS-30 und MS-50 A.E.I. - Dünnschichtchromatographie: DC-Alufolien, Kieselgel 60 F₂₅₄ (Merck). - Säulenchromatographie: Kieselgel (63-100 µm) (Merck). - IR: Bruker IFS 113.

1,3,5-Tris{[2,6-bis(methoxycarbonyl)-4-pyridinyloxy]methyl}benzol (5): 9.75 g (42.5 mmol) 3^{7} werden in 400 ml Aceton gelöst. Man fügt 5.88 g (45.86 mmol) K₂CO₃ und anschließend 4.1 g (11.4 Tab. 1. ¹H-NMR-Daten des Macrocyclus 2

mmol) 4⁶ hinzu und erhitzt 24 h unter Rückfluß. Dann wird das Lösungsmittel bis zur Trockne abdestilliert. Man nimmt den Rückstand in 400 ml CH₂Cl₂ auf, erhitzt 30 min unter Rückfluß, filtriert heiß, engt auf etwa 1/5 des Volumens ein und versetzt bis zur beginnenden Trübung mit Aceton, wonach ein farbloser Feststoff ausfällt; Ausb. 8.06 g (76%), Schmp. 208–209 °C. – MS (70 eV): m/z (%) = 747.1912 (5) [M⁺], ber. 747.1912. – ¹H-NMR (200 MHz, CDCl₃): δ = 3.98 (s, 18H, OCH₃), 5.97 (s, 6H, CH₂O), 7.54 (s, 3H, Aryl-H), 7.89 (s, 6H, Aryl-H). – ¹³C-NMR (90 MHz, CDCl₃): δ = 53.21, 69.98, 114.65, 126.85, 136.37, 149.90, 164.95, 166.37. – IR (KBr) [cm⁻¹]: \tilde{v} = 1740 (s) (CO), 1605 (s) (C=C), 1355 (s) (CH₃).

 $\begin{array}{rl} C_{36}H_{33}N_{3}O_{15}\cdot 1 \ H_{2}O \ (765.6) & \mbox{Ber. C} \ 56.47 \ H \ 4.61 \ N \ 5.49 \\ & \mbox{Gef. C} \ 56.69 \ H \ 4.40 \ N \ 5.77 \end{array}$

1.3.5-Tris{[2,6-bis(hydroxymethyl)-4-pyridinyloxy]methyl]benzol (6): Unter Schutzgas gibt man zu einer Suspension von 5.05 g (6.75 mmol) 5 250 ml wasserfreiem Ethanol bei 0°C portionsweise 3.58 g (9.50 mmol) NaBH₄. Man läßt noch 1 h bei 0°C rühren, dann 3 h bei Raumtemp. Anschließend wird 14 h unter Rückfluß erhitzt. Das Lösungsmittel wird abdestilliert und der Rückstand mit 250 ml Aceton versetzt. Man erwärmt die Suspension nochmals 40 min, wobei man nicht zum Sieden kommen läßt. Das Lösungsmittel wird wieder abdestilliert und der Rückstand getrocknet. Man versetzt mit 60 ml kaltgesättigter K2CO3-Lösung und erhitzt 1 h bei 60-80°C. Es bilden sich zwei Phasen, und ein farbloser Feststoff fällt aus, der abfiltriert und getrocknet wird. Das so erhaltene Rohprodukt wird in Methanol aufgenommen und durch Zugabe von Aceton ausgefällt. Zur weiteren Reinigung kann es im Soxhlet-Extraktor mit Ethanol extrahiert werden. Nach Abdestillieren des Lösungsmittels erhält man einen farblosen Feststoff; Ausb. 2.57 g (69%), Schmp. 240–245 °C. – MS (70 eV): m/z (%) = 580.23 (70) $[M^+ + H]$. - ¹H-NMR (200 MHz, $[D_6]DMSO$): $\delta = 4.49$ (d, ${}^{3}J = 6$ Hz, 12H, CH₂OH), 5.26 (s, 6H, CH₂O), 5.38 (t, ${}^{3}J = 6$ Hz,

Tab. 2. Koordinaten und Koeffizienten U_{iso} [Å²] der äquivalenten isotropen Temperaturfaktoren der Nichtwasserstoffatome der asymmetrischen Einheit von 2 mit den Standardabweichungen der letzten Stelle in Klammern; die äquivalenten isotropen Temperaturfaktoren wurden nach der allgemeinen Formel $U_{iso} = [U(11) \cdot U(22) \cdot U(33)]^{1/3}$ berechnet

C(14) -0.288(4) 0.859(2) -0.546(4) 0.0575 C(18) 0.461(4) 0.5774(2) 0.3342(4) 0.555 C(2A) -0.3473(3) 0.81442(2) -0.5698(4) 0.0555 C(18) 0.5774(2) 0.3701(3) 0.0703 C(2A) -0.3737(3) 0.8142(2) -0.5688(4) 0.0555 C(18) 0.4574(3) 0.5774(2) 0.3262(3) 0.0703(3) 0.0703(3) 0.0703(3) 0.0703(3) 0.0703(3) 0.0703(3) 0.0703(3) 0.0703(3) 0.0703(3) 0.0703(3) 0.0703(3) 0.0703(3) 0.0703(3) 0.0755(3) 0.04574(3) 0.4554(3) 0.4554(3) 0.0555(3) 0.0555(3) 0.0555(3) 0.0555(3) 0.0555(3) 0.0552(3)	Atom	x/a	y/b	z/c	U(iso)	Atom	x/a	y/b	z/c	U(iso)
C(2A) -0.342(24) 0.8839(2) -0.5508(4) 0.0558 (H4B) 0.8171(2) 0.5774(2) 0.3208(3) 0.0511 N(GA) -0.3247(3) 0.5842(2) -0.5843(3) 0.5558 0.5574(2) 0.3574(2) 0.3558(5) 0.2559(5) 0.318(2) 0.2559(5) 0.2559(5) 0.318(2) 0.2599(5) 0.2559(5) 0.318(2) 0.2599(5) 0.2559(5) 0.318(2) 0.2599(5) 0.2598(5) 0.2588(2) 0.2598(5) 0.2588(2) 0.2598(5) 0.2588(2) 0.2598(2) 0.2598(6) 0.2598(6) 0.2598(6) 0.2598(6) 0.2598(6) 0.2598(6) 0.2598(6) 0.2598(6)	C(1A)	-0.2988(4)	0.8308(2)	-0.5460(4)	0.0575	C(3B)	0.6405(4)	0.6270(2)	0.3342(4)	0.0556
CrAA -0.3073(b) 0.9134(z) -0.5884(4) 0.9535 CFGB 0.95714(2) 0.5744(2) 0.3701(3) 0.0473 NIAA -0.3224(z) 0.5813(z) 0.5545 CFGB 0.45714(1) 0.5542(2) 0.2555(8) 0.0565 CFAA -0.1140(r) 0.8512(2) 0.5555(8) 0.0553 ST718(b) 0.4555(7) 0.45555(7) 0.2555(8) 0.0565 ST7AA 0.01233(6) 0.871(1) -0.5555(8) 0.0551 C/TBE 0.3521(2) 0.4551(7) 0.2555(8) 0.3446(8) 0.0667 ST7AA 0.0123(2) 0.5651(8) 0.4561(1) 0.5551(8) 0.3466(8) 0.3521(8) 0.3	C(2A)	-0.3422(4)	0.8839(2)	-0.5508(4)	0.0568	N(4B)	0.6172(3)	0.5778(2)	0.3209(3)	0.0518
N(AA) -0.2342(2) 0.8942(2) -0.6183(3) 0.0554 (CEB) 0.5514(4) 0.5514(2) 0.8513(C(3A)	-0.3073(3)	0.9134(2)	-0.5888(4)	0.0535	C(5B)	0.5671(3)	0.5734(2)	0.3701(3)	0.0473
C(A) -0.1937(3) 0.6421(2) -0.6123(4) 0.0528 M(7E) 0.4534(3) 0.4534(3) 0.4534(3) 0.4534(3) 0.4534(3) 0.0528(3) 0.0578(4) 0.0578(4) 0.0578(4) 0.0578(4) 0.0578(4) 0.0578(4) 0.0578(4) 0.0578(4) 0.0578(4) 0.0588(4) 0.0578(4) 0.0588(4) 0.0578(4) 0.0588(4) 0.3373(2) 0.2382(4) 0.0672 C(7A) 0.0447(2) 0.2582(1) -0.5384(4) 0.0588(4) 0.3382(4) 0.0582(4) 0.3382(4) 0.0582(7) 0.3382(4) 0.0582(7) 0.3382(4) 0.0582(7) 0.3382(4) 0.0582(7) 0.3382(4) 0.0582(7) 0.3382(4) 0.0582(7) 0.3382(4) 0.0582(7) 0.3382(4) 0.0582(7) 0.3382(4) 0.0582(7) 0.3382(4) 0.0582(7) 0.3386(2) 0.22884(7) 0.1177(7) 0.1177(7) 0.1177(7) 0.0177(7) 0.3382(4) 0.0682(7) 0.3386(2) 0.22884(7) 0.2382(7) 0.22884(7) 0.2382(7) 0.2388(7) 0.22884(7) 0.2382(7) 0.1177(7) 0.111111111111111111111111111111111111	N(4A)	-0.2342(3)	0.8942(2)	-0.6183(3)	0.0546	C(6B)	0.5518(4)	0.5166(2)	0.3614(3)	0.0547
CHA1 -0.1140(A) 0.8218(P) -0.6434(A) 0.0533 SI/PBB 0.413911 0.4458(A) 0.2435(A) 0.2455(A) C(7A) 0.7253(A) 0.7253(A) -0.6238(B) 0.0677 C(726) 0.5352(B) 0.4458(A) 0.3352(B) 0.5352(B) 0.3352(B) 0.5352(B) 0.5352(B) 0.2352(B) 0.5352(B) 0.2352(B) 0.2554(B) 0.4551(B) 0.2554(B) 0.4551(B) 0.2554(B) 0.4551(B) 0.2554(B) 0.4551(B) 0.2554(B) 0.4551(B) 0.2554(B) <t< td=""><td>C(5A)</td><td>-0.1937(3)</td><td>0.8421(2)</td><td>-0.6123(4)</td><td>0.0528</td><td>N(7B)</td><td>0.4554(3)</td><td>0.5033(2)</td><td>0.2809(3)</td><td>0.0504</td></t<>	C(5A)	-0.1937(3)	0.8421(2)	-0.6123(4)	0.0528	N(7B)	0.4554(3)	0.5033(2)	0.2809(3)	0.0504
N(A) -0.1581(i) 0.5761(i) 0.1582(i) 0.4782(i) 0.2582(i) 0.0258(i) C(7A) 0.0477(i) 0.2581(i) 0.0258(i) 0.0258(i) 0.0258(i) C(7A) 0.0471(i) 0.7282(i) 0.0258(i) 0.0258(i) <td< td=""><td>C(6A)</td><td>-0.1140(4)</td><td>0.8216(2)</td><td>-0.6493(4)</td><td>0.0553</td><td>S(7Ba)</td><td>0.4139(1)</td><td>0.45535(5)</td><td>0.29555(9)</td><td>0.0561</td></td<>	C(6A)	-0.1140(4)	0.8216(2)	-0.6493(4)	0.0553	S(7Ba)	0.4139(1)	0.45535(5)	0.29555(9)	0.0561
0.072 0.0427(b) 0.2578(1) 0.0523(c) 0.0674 0.7784(c) 0.5381(c) 0.5371(c) 0.5371(c) 0.5371(c) 0.5371(c) 0.5371(c) 0.5371(c) 0.5371(c) 0.3322(c) 0.6382(c) 0.6691(c) 0.6531(c) 0.5371(c) 0.3322(c) 0.6381(c) 0.5531(c) 0.5371(c) 0.3322(c) 0.6371(c) 0.3322(c) 0.0382(c) 0.6691(c) 0.6531(c) 0.3172(c) 0.2382(c) 0.0372(c) 0.2594(c) 0.3322(c) 0.0372(c) 0.2594(c) 0.4777(c) 0.4971(c) 0.4771(c) 0.477	N(7A)	-0.0138(3)	0.8211(2)	-0.5664(3)	0.0497	O(7Bb)	0.4123(3)	0.4/12(2)	0.3928(3)	0.0705
0.1646(2) 0.7646(2) 0.7646(2) 0.6588 C(7Ee) 0.5888(4) 0.3262(3) 0.3822(4) 0.0867 C(7Ae) 0.0651(3) 0.757(2) 0.7024(3) 0.0669 C(7FB) 0.6533(5) 0.3182(5) 0.3262(6) 0.3822(6) 0.3822(6) 0.3822(7) 0.2668(7) 0.2678(7) 0.2678(7) 0.2678(7) 0.2678(7) 0.2678(7) 0.2678(7) 0.2678(7) 0.2678(7) 0.2678(7) 0.2678(7) 0.2678(7) 0.2678(7) 0.2678(7) 0.2678(7) 0.2678(7) 0.2678(7) 0.2678(7) 0.2678(7) <t< td=""><td>O(7Ab)</td><td>0.07233(9)</td><td>0.77644(5)</td><td>-0.53559(3)</td><td>0.0513</td><td></td><td>0.3232(3)</td><td>0.4459(1)</td><td>0.2002(3)</td><td>0.0007</td></t<>	O(7Ab)	0.07233(9)	0.77644(5)	-0.53559(3)	0.0513		0.3232(3)	0.4459(1)	0.2002(3)	0.0007
C(7Ae) 0.0561(3) 0.7957(2) -0.7024(3) 0.4680 C(7Fa) 0.6828(5) 0.3428(3) 0.2853(6) 0.0733 C(7A) 0.0428(5) 0.8323(2) -0.8677(4) 0.04533 C(7AB) 0.4858(2) 0.2898(6) 0.04933 C(7A) 0.0428(5) 0.8322(3) -0.8677(4) 0.0711 C(7B) 0.4727(4) 0.3658(2) 0.2898(4) 0.2498(4) 0.2498(4) 0.2498(4) 0.2498(4) 0.2498(4) 0.2498(4) 0.2498(4) 0.2498(4) 0.2498(4) 0.2498(4) 0.2498(4) 0.2498(4) 0.2498(4) 0.2498(4) 0.2498(4) 0.2498(4) 0.4697(4) 0.4697 C(10B) 0.2868(3) 0.5498(2) 0.1479(5) 0.0617 0.1497(4) 0.5597(4) 0.6977(4) 0.5797(5) 0.4177(4) 0.6977 C(10B) 0.2498(4) 0.5498(2) 0.2498(4) 0.5498(2) 0.2498(4) 0.5498(2) 0.2498(4) 0.5798(5) 0.3178(1) 0.4037(5) 0.1578(4) 0.5578(4) 0.5578(4) 0.5578(4) 0.5498(2) 0.04177(4) 0.65578(4) 0.54	O(7Ac)	0.1645(2)	0.7885(1)	-0.5141(2)	0.0585	C(7Be)	0.5888(4)	0.3923(3)	0.3852(4)	0.0692
C(7A) 0.1221(4) 0.8336(2) -0.6901(4) 0.6533 C(7Ep) 0.65336(5) 0.3185(2) 0.2780(4) 0.0699 C(7A) 0.0482(5) 0.3302(3) -0.6659 C(7B) 0.4282(4) 0.3664(2) 0.2994(4) 0.0699 C(7A) 0.0045(5) 0.7372(3) 0.7774(4) 0.0659 C(7B) 0.4282(4) 0.3664(2) 0.2994(4) 0.0671 C(7A) 0.0045(5) 0.7372(3) 0.7774(3) 0.0711 C(1B) 0.2894(2) 0.1777(3) 0.0471 C(7A) 0.0045(5) 0.7374(2) 0.4006(4) 0.6461(4) 0.5441(2) 0.1479(4) 0.8971(2) C(1A) 0.6776(4) 0.8477(2) 0.4496(4) 0.5444(2) 0.04791(4) 0.8971(2) C(1A) 0.1471(4) 0.8311(2) 0.16974(4) 0.5444(2) 0.04791(4) 0.8971(2) C(1A) 0.1471(4) 0.8311(2) 0.16954(4) 0.5444(2) 0.04791(4) 0.8971(2) C(1A) 0.4495(5) 1.4395(5) 0.4391(5) 0.4391(6)	C(7Ad)	0.0661(3)	0.7957(2)	-0.7024(3)	0.0480	C(7Bf)	0.6625(5)	0.3496(3)	0.3823(5)	0.0770
C(7A) 0.1427(4) 0.4587(5) 0.3587(5) 0.3587(5) 0.3587(5) 0.3587(5) 0.2588(5) 0.2698(5) 0.0698 C(7A) 0.0424(5) 0.3320(3) 0.8587(4) 0.0711 C(7A) 0.0737(5) 0.2598(4) 0.2698(4) 0.3686(2) 0.2698(4) 0.3686(2) 0.2698(4) 0.3686(2) 0.2698(4) 0.3677(5) 0.2598(3) 0.5547(4) 0.3777(5) 0.2598(3) 0.5547(4) 0.3677(4) 0.3777(5) 0.3777(6) 0.2598(3) 0.5547(2) 0.3617(4) 0.3677(2) 0.3697(2) 0.3617(4) 0.3677(2) 0.3777(2) 0.3617(4) 0.3677(2) 0.3777(2) 0.3617(4) 0.3677(2) 0.3777(2) 0.3617(4) 0.3657(2) 0.3617(4) 0.3657(2) 0.3617(4) 0.3657(2) 0.3617(4) 0.3657(2) 0.3617(4) 0.3657(2) 0.361(4) 0.3657(2) 0.377(2) 0.3777(2) 0.3777(2) 0.3777(2) 0.3777(2) 0.3777(2) 0.3578(2) 0.3787(2) 0.3787(2) 0.3777(2) 0.3777(2) 0.3578(2) 0.3777(2) 0.3777(2) 0.37777(2) <t< td=""><td>C(7Ae)</td><td>0.1221(4)</td><td>0.8335(2)</td><td>-0.6901(4)</td><td>0.0533</td><td>C(7Bg)</td><td>0.6539(5)</td><td>0.3127(3)</td><td>0.2950(6)</td><td>0.0793</td></t<>	C(7Ae)	0.1221(4)	0.8335(2)	-0.6901(4)	0.0533	C(7Bg)	0.6539(5)	0.3127(3)	0.2950(6)	0.0793
C(TA ₀) 0.0482(5) 0.332(3) -0.8687(4) 0.0711 C(TA) 0.0084(5) 0.7323(3) -0.3794(4) 0.0761 C(TA) 0.0094(5) 0.7323(2) -0.3794(4) 0.0668 C(BB) 0.4461(3) 0.4594(2) 0.4773(7) 0.491(7) 0.591(7) 0.691(7)	C(7Af)	0.1127(4)	0.8503(2)	-0.7740(4)	0.0659	C(7Bh)	0.5675(5)	0.3185(2)	0.2089(5)	0.0808
C(TAh) -0.0084(5) 0.7332(3) -0.8794(4) 0.0761 C(T8) 0.7377(6) 0.8294(2) 0.1111 C(TA) 0.0005(4) 0.775(2) -0.4796(2) 0.1111(3) 0.448 C(TA) 0.0005(4) 0.757(7) 0.477(2) 0.0471(3) 0.0488 C(TA) 0.0377(2) 0.9477(2) -0.3486(4) 0.0571 C(T18) 0.5574(2) -0.0117(4) 0.0255 C(T1A) 0.0177(4) 0.8531(2) -0.2456(4) 0.0653 C(T18) 0.2584(3) 0.577(2) -0.0117(4) 0.0255 C(T1A) 0.1184(4) 0.8531(2) -0.2256(4) 0.0653 C(T48) 0.2564(3) 0.5774(2) -0.0277(2) 0.0262 C(T3A) 0.1184(4) 0.8051(2) -0.2268(4) 0.0653 C(T48) 0.2564(3) 0.5774(2) -0.3078(1) 0.0755 C(T5A) 0.23631(1) 1.9403(2) -0.2672(2) -0.2374(1) 0.0756 C(T88) 0.4757(4) -0.3078(1) 0.0576 C(T88) 0.47578(1) 0.0556 C(C(7Ag)	0.0482(5)	0.8302(3)	-0.8687(4)	0.0711	C(7Bi)	0.4926(4)	0.3606(2)	0.2094(4)	0.0692
C(7A) 0.0503(4) 0.7753(2) -0.7863(4) 0.0668 C(8B) 0.4461(3) 0.4966(2) 0.1777(3) 0.4471 C(7A) 0.03757(7) 0.4990(4) -0.5595(5) 0.0168 C(18B) 0.2584(2) 0.1478(3) 0.0591 C(AA) 0.0723(5) 0.8758(2) -0.4003(3) 0.0476 C(11B) 0.2254(4) 0.5564(2) 0.0187(4) 0.0577 C(11A) 0.1716(4) 0.8571(2) -0.2268(4) 0.0683 C(14S) 0.2544(4) 0.5576(2) -0.2070(6) 0.0726(1) 0.7762(2) -0.2070(6) 0.0628 C(11A) 0.1575(4) 0.9538(2) -0.2687(4) 0.0575 O(15Be) 0.0772(4) 0.2576(2) -0.2384(4) 0.1614(4) 0.1614(4) 0.1614(4) 0.1614(4) 0.1625 C(15A) 0.2385(1) 1.0403(5) -0.0584(8) 0.0575 C(15Be) 0.1792(4) 0.2574(3) -0.4015(4) 0.4717(4) 0.4714(4) 0.4746(8) 0.4714(4) 0.4746(8) 0.4714(4) 0.4746(8) 0.4714(4) 0.4746(8)	C(7Ah)	-0.0084(5)	0.7932(3)	-0.8794(4)	0.0761	C(7Bj)	0.7377(6)	0.2694(3)	0.2923(7)	0.1111
C(7A) 0.0375(7) 0.8490(4) -0.8958(5) 0.0688 C(8B) 0.3558(3) 0.5294(2) C.1118(3) 0.4438 C(FA) 0.0720(5) 0.8778(2) -0.4400(3) 0.0477 C(11B) 0.2858(3) 0.5586(2) 0.0817(4) 0.6577 C(10A) 0.05771(2) -0.3486(4) 0.0577 C(12B) 0.1719(4) 0.5772(2) -0.3157(4) 0.57717(2) -0.3157(4) 0.57717(2) -0.3157(4) 0.57717(2) -0.3257(4) 0.0573 C(14B) 0.2421(4) 0.57741(6) 0.5771(2) -0.2857(2) -0.2077(1) 0.02675 C(13A) 0.1496(4) 0.96331(2) -0.2082(4) 0.0657 C(15B) 0.05776(2) 0.5558(2) -0.247(4) 0.0755 C(15A) 0.3250(4) 1.04861(2) -0.0574(4) 0.5558(2) -0.247(4) -0.547(4) 0.5432(2) -0.0575(2) C(15A) 0.3258(3) 1.04861(2) -0.0584(4) 0.0577 C(15B) 0.1345(5) -0.338(4) 0.4175(5) -0.158(5) 0.05782(2) -0.2447(6) -	C(7Ai)	0.0003(4)	0.7753(2)	-0.7969(4)	0.0668	C(8B)	0.4461(3)	0.4996(2)	0.1777(3)	0.0471
$ \begin{array}{c} (1A) \\ ($	C(7Aj)	0.0375(7)	0.8490(4)	-0.9595(5)	0.1068	C(9B)	0.3508(3)	0.5294(2)	0.1118(3)	0.0438
$ \begin{array}{c} (1) \\ (1) $	C(8A)	0.0134(4)	0.8/55(2)	-0.5119(3)	0.0511	C(10B)	0.2863(3)	0.5643(2)	0.1479(3)	0.0501
$ \begin{array}{c} c_{113} c_{117} c_{117$	C(9A)	0.0720(3)	0.8782(2)	-0.4003(3)	0.04/6		0.2025(4)	0.5896(2)	0.0812(4)	0.0577
C112A) 0.1781(4) 0.5911(2) -0.1951(4) 0.0637 C1180 0.2443(1) 0.5374(2) 0.5374(2) 0.5581(0) 0.0628 C114A) 0.2614(4) 0.25516(4) 0.5536(4) 0.0628 C114A) 0.2515(4) 0.9638(2) -0.2265(4) 0.0637 C1158b) 0.0078(3) 0.5748(8) -0.3276(1) 0.0755 C1158b) 0.0376(3) 0.5576(2) -0.2376(1) 0.0755 C1158b) 0.0376(3) 0.5576(2) -0.2387(4) 0.0575 C1158b) 0.0376(3) 0.5576(2) -0.2387(4) 0.0575 C1158b) 0.0376(3) 0.5576(2) -0.2387(4) 0.0575 C1158b) 0.0375(3) 0.5576(2) -0.2387(4) 0.0575 C1158b) 0.0376(3) 0.5356(2) -0.2484(4) 0.0257(2) -0.3387(4) 0.0575 C1158b) 0.1394(5) 0.4371(4) 0.5254(3) -0.415(4) 0.0575 C1158b) 0.1394(5) 0.4371(4) 0.2575(2) -0.2385(4) 1.0385(2) -0.0243(3) 0.0865 C1158b) 0.1394(5) 0.4371(4) -0.4174(5) 0.0858 C115Ab 0.3394(5) 1.1385(3) -0.0966(4) 0.0576 C1158b) 0.1195(5) 0.4494(5) -0.4886(5) 0.0938 C115Ab 0.4394(5) -1.4384(5) 0.2385(4) 1.0385(2) -0.0243(3) 0.0858 C1158b) 0.1790(5) 0.4494(5) -0.5432(5) 0.0976 C115Ab 0.3945(5) 1.1460(3) -0.1211(6) 0.0862 C115Bb 0.16394(5) 0.4380(4) -0.4578(6) 0.0938 C115Ab 0.494(5) 1.0578(2) -0.0978(4) 0.0727 C115Bb 0.1638(5) 0.0538(0) -0.0772(4) 0.0625 C115Ab 0.3494(5) 1.1400(3) -0.12116(5) 0.0393 C(15Bb) 0.2035(3) -0.2015(6) 0.0440(5) -0.5210(7) 0.0387 C115Ab 0.4976(6) 1.1710(5) -0.13976(4) 0.0633(3) -0.0272(4) 0.0625 C115Ab 0.3497(6) 1.1710(5) -0.1595(8) 0.1317 C(15B) 0.2334(4) 0.6335(3) -0.0272(4) 0.0625 C115Ab 0.4976(6) 1.1710(5) -0.2381(4) 0.0554 C115Bb 0.1638(5) -0.2015(6) 0.0441(3) 0.0597(4) 0.0555 C115Ab 0.4976(6) 1.1710(5) -0.2381(4) 0.0554 C115B 0.0233(4) 0.0577(4) 0.0557 C115Ab 0.4776(6) 1.1772(7) 0.3376(1) 0.2251(2) 0.2351(4) 0.0551 C115Ab 0.4976(6) 1.1717(2) -0.3516(3) 0.0472(4) 0.0551 C115Ab 0.4981(4) 0.0577(4) 0.0575 C115Ab 0.4977(3) 0.0772(4) 0.0575 C115Ab 0.4977(3) 0.0772(4) 0.0575 C115Ab 0.4977(3) 0.0772(4) 0.0575(5) 0.0628 C11Ab 0.0581(2) 0.7746(3) 0.7744(7) 0.0577(2) 0.0375(5) 0.0628 C11Ab 0.0581(2) 0.7746(3) 0.7744(7) 0.0575(2) 0.0574(4) 0.0575(2) 0.0574(4) 0.0575(2) 0.0574(4) 0.0575(2) 0.0575(4) 0.0575(4) 0.0575(4) 0.0757 C1284b 0.0571(4) 0.7744(7) 0.5768(2) 0.0575(4	C(11A)	0.0576(4)	0.8535(2)	-0.3486(4)	0.0579	C(12B)	0.1879(4)	0.5797(2)	-0.0187(4)	0.0635
$\begin{array}{c} C(134)\\ C(144)\\ C(144)\\$	C(12A)	0.1761(4)	0.8911(2)	-0.2456(4)	0.0618	C(13B)	0.2000(4)	0.5449(2)	-0.0479(4)	0.0579
C(14A) 0.2515(4) 0.9632(2) 0.05827 S(15Ea) 0.10407(1) 0.57415(4) 0.0578(1) 0.0578(1) 0.0578(1) 0.0578(1) 0.0578(1) 0.0578(1) 0.0578(1) 0.0578(1) 0.0578(1) 0.04517(1) 0.0578(1) 0.04517(1) 0.0578(1) 0.04517(1) 0.0578(1) 0.04517(1) 0.0578(1) 0.04517(1) 0.0578(1) 0.04517(1) 0.04717(1) <td>C(13A)</td> <td>0.1848(4)</td> <td>0.9209(2)</td> <td>-0.2566(4)</td> <td>0.0583</td> <td>N(15B)</td> <td>0.2443(4)</td> <td>0.5304(3)</td> <td>-0.1558(4)</td> <td>0.0710</td>	C(13A)	0.1848(4)	0.9209(2)	-0.2566(4)	0.0583	N(15B)	0.2443(4)	0.5304(3)	-0.1558(4)	0.0710
$ \begin{array}{c} N(15A) \\ S(15Aa) \\$	C(14A)	0.2515(4)	0.9638(2)	-0.2082(4)	0.0637	S(15Ba)	0.1040(1)	0.57418(8)	-0.3078(1)	0.0755
S(15A) 0.2693(1) 1.04480(5) -0.0575 O(156b) 0.0728(4) 0.2527(2) -0.3361(4) 0.1052 O(15Ab) 0.3385(3) 1.010(2) -0.0243(3) 0.0852 C(15Ba) 0.1384(5) 0.4316(5) 0.4417(5) 0.0455(5) 0.0055 C(15Ab) 0.2386(4) 1.1365(3) -0.0990(5) 0.0759 C(15Ba) 0.1316(5) 0.4316(5) 0.4386(5) 0.0582 C(15Ab) 0.2386(4) 1.1630(3) -0.1216(5) 0.0575 C(15Ba) 0.4394(5) 0.4578(5) 0.0976 C(15Ab) 0.4394(5) 1.1630(3) -0.1216(5) 0.0939 C(15B1) 0.4694(5) 0.4578(5) 0.933 C(15Ab) 0.4294(1) 1.05671(2) -0.0774(4) 0.0724 C(16B) 0.2834(4) 0.6533(3) -0.0215(5) 0.0825 C(15Ab) 0.4296(4) 1.02571(2) -0.2817(4) 0.0654 C(16B) 0.2834(4) 0.6538(3) -0.0215(4) 0.0657 C(15Ab) 0.4297(6) 1.0270(2) -0.2831(4) 0.6538(3)	N(15A)	0.2030(3)	1.0133(2)	-0.1650(3)	0.0536	O(15Bb)	0.0376(3)	0.5558(2)	-0.2842(4)	0.0979
C(15Ab) 0.3385(3) 1.0110(2) 0.019(3) 0.0711 C(15Bc) 0.2524(3) -0.4015(4) 0.0717 C(15Ac) 0.2320(3) 1.0860(2) -0.0243(3) 0.0652 C(15Bc) 0.1145(5) 0.4344(3) -0.4484(5) 0.0488(5) 0.0593 C(15Ac) 0.2396(4) 1.1355(3) -0.1214(5) 0.0682 C(15Bb) 0.1790(5) 0.4476(4) -0.5425(5) 0.0573 C(15Ab) 0.3396(5) 1.1630(3) -0.1214(5) 0.0682 C(15Bb) 0.1689(5) 0.5380(4) -0.5520(5) 0.0186 C(15Ab) 0.4694(5) 1.0677(3) -0.1216(5) 0.0939 C(15B) 0.2015(6) 0.4040(5) -0.6210(7) 0.1327 C(15Ab) 0.4694(8) 1.07115 -0.1395(8) 0.1371 C(17B) 0.3334(4) 0.6333(3) -0.0972(4) 0.06576 C(15Ab) 0.4204(1) 1.0256(2) -0.2314(4) 0.0584 N(18B) 0.4714(3) 0.6358(2) 0.0512(4) 0.0555 C(15A) 0.1397(4) 1.0256(2) -0.2314(4) 0.0584 C(118) 0.7172(2) 0.0375(6) 0.0	S(15Aa)	0.2693(1)	1.04803(5)	-0.05944(9)	0.0575	O(15Bc)	0.0792(4)	0.6257(2)	-0.3361(4)	0.1052
C(15A) 0.2020(3) 1.0860(2) -0.0243(3) 0.0852 C(15B) 0.1134(5) 0.434(2) -0.4174(6) 0.0253 C(15A) 0.3350(4) 1.1635(3) -0.0990(5) 0.0759 C(15B) 0.1139(5) 0.434(6) -0.5432(6) 0.0990(5) 0.0759 C(15B) 0.11927(5) 0.4476(4) -0.5432(6) 0.0937 C(15A) 0.4394(5) 1.1400(3) -0.1214(5) 0.0939 C(15B) 0.1689(5) 0.5380(4) -0.4578(6) 0.0937 C(15A) 0.4294(4) 1.0677(2) -0.0978(4) 0.0724 C(16B) 0.2334(4) 0.6333(3) -0.027(4) 0.0676 C(15A) 0.44976(8) 1.1710(5) -0.2381(4) 0.0634 C(18B) 0.4248(3) 0.6133(2) -0.0414(3) 0.0576 C(17A) 0.0201(4) 1.0257(2) -0.2551(3) 0.0506 C(20B) 0.4214(3) 0.6334(2) 0.0575(4) 0.0652 C(18A) -0.0476(3) 1.0277(2) -0.3561(3) 0.0508 C(22B) 0.2321(4) 0.6364(2) 0.0575(6) 0.444(3) 0.6133(2) 0.0464(4) 0.0552	O(15Ab)	0.3385(3)	1.0110(2)	0.0019(3)	0.0711	C(15Bd)	0.1298(4)	0.5254(3)	-0.4015(4)	0.0717
$ \begin{array}{c} C(15Aa) 0.3350(4) & 1.0833(2) & -0.0866(4) & 0.0570 \\ C(15Ab) 0.2986(4) & 1.1365(3) & -0.1211(6) & 0.0862 \\ C(15Ab) 0.1297(5) & 0.4946(5) & -0.5270(5) & 0.0976 \\ C(15Ab) 0.3496(5) & 1.13630(3) & -0.1211(6) & 0.0862 \\ C(15Bb) 0.1689(5) & 0.5380(4) & -0.4576(5) & 0.0930 \\ C(15Ab) 0.4331(6) & 1.0677(3) & -0.1216(5) & 0.0939 \\ C(15Ab) 0.4297(4) & 1.0677(3) & -0.1216(5) & 0.0939 \\ C(15Ab) 0.4290(4) & 1.0677(3) & -0.1216(5) & 0.0939 \\ C(15Ab) 0.4290(4) & 1.0677(3) & -0.1216(5) & 0.0939 \\ C(15Ab) 0.4290(4) & 1.0677(3) & -0.0978(4) & 0.0724 \\ C(16B) 0.2828(4) 0.6033(3) & -0.0215(5) & 0.0829 \\ C(15Ab) 0.4290(4) & 1.0578(2) & -0.0287(4) & 0.06334(4) & 0.6333(3) & -0.0972(4) & 0.0556 \\ C(16Ab) & 0.1181(4) & 1.0256(2) & -0.2814(4) & 0.0544 \\ C(19B) 0.4248(3) & 0.6334(2) & 0.0612(4) & 0.0556 \\ C(12Ab) & -0.1352(3) & 1.0137(2) & -0.3789(4) & 0.0643 \\ C(12Ab) & -0.1352(3) & 1.0137(2) & -0.3789(4) & 0.0472 \\ C(2Ab) & -0.1352(3) & 1.0137(2) & -0.3789(4) & 0.0633 \\ C(22A) & -0.1557(4) & 1.0000(2) & -0.2154(4) & 0.0543 \\ C(22A) & -0.1352(4) & 1.0009(2) & -0.2154(4) & 0.0543 \\ C(22A) & -0.1373(3) & 0.7764(3) & 0.1724(7) & 0.0875 \\ C(22A) & -0.1373(3) & 0.7761(3) & 0.7764(3) & 0.7764(3) & 0.1724(7) & 0.0855 \\ C(2Ab) & -0.1576(6) & 0.7764(3) & 0.1724(7) & 0.0875 \\ C(2Ab) & -0.1673(5) & 0.2274(4) & 0.0673 \\ C(22Ab) & -0.0851(5) & 0.7146(2) & 0.2846(5) & 0.0387(6) & 0.0484 \\ C(22Ab) & -0.0851(5) & 0.3834(2) & -0.1617(4) & 0.0778 \\ C(2Ab) & -0.0851(5) & 0.3834(3) & -0.3394(5) & 0.0729 \\ C(2Ab) & -0.0851(5) & 0.3846(5) & 0.1724(7) & 0.0827 \\ C(2Ab) & -0.0851(5) & 0.3834(3) & -0.394(5) & 0.0729 \\ C(2Ab) & -0.0851(5) & 0.7464(2) & 0.2828(6) & 0.6815(2) & 0.2846(5) & 0.0851(2) & 0.2846(5) & 0.0851(2) & 0.2846(5) & 0.0851(2) & 0.2846(5) & 0.0851(2) & 0.2846(5) & 0.0851(2) & 0.2846(5) & 0.0851(2) & 0.2846(5) & 0.0851(2) & 0.2846(5) & 0.0851(2) & 0.2846(5) & 0.0851(2) & 0.2846(5) & 0.0851(2) & 0.2846(5) & 0.0851(2) & 0.2846(5) & 0.0851(2) & 0.2846(5) & 0.0851(2) & 0.2846(5) & 0.0851(2) & 0.2846(5) & 0.0851(2) & 0.2846(5) & 0.0851(2) &$	O(15Ac)	0.2020(3)	1.0860(2)	-0.0243(3)	0.0852	C(15Be)	0.1145(5)	0.4731(4)	-0.4174(5)	0.0835
$ \begin{array}{c} C(15AB) & 0.2986(4) & 1.1363(3) & -0.0980(5) & 0.0759 \\ C(15AB) & 0.1927(5) & 0.4476(4) & -0.5432(5) & 0.0976 \\ C(15AB) & 0.4394(5) & 1.1630(3) & -0.1344(5) & 0.0658 \\ C(15AB) & 0.4394(5) & 1.0367(3) & -0.1347(5) & 0.0958 \\ C(15AB) & 0.4294(4) & 1.0578(2) & -0.0978(4) & 0.0724 \\ C(15AB) & 0.4294(4) & 1.0578(2) & -0.0978(4) & 0.0724 \\ C(15AB) & 0.4294(4) & 1.0578(2) & -0.0978(4) & 0.0724 \\ C(15AB) & 0.4296(4) & 1.0578(2) & -0.0978(4) & 0.0724 \\ C(15AB) & 0.4296(4) & 1.0578(2) & -0.0978(4) & 0.0724 \\ C(15AB) & 0.4276(B) & 1.1710(5) & -0.5358(5) & 0.1317 \\ C(17A) & 0.0201(4) & 1.0258(2) & -0.2514(4) & 0.0654 \\ C(17A) & 0.0201(4) & 1.0258(2) & -0.2514(4) & 0.0654 \\ C(18A) & -0.0476(3) & 1.0277(2) & -0.5516(3) & 0.0506 \\ C(20B) & 0.4281(4) & 0.6836(2) & 0.0957(4) & 0.0575 \\ C(18A) & -0.0476(3) & 1.0277(2) & -0.3551(3) & 0.0506 \\ C(21A) & -0.0482(4) & 1.0004(2) & -0.3123(4) & 0.0538 \\ C(22A) & -0.1587(4) & 1.0004(2) & -0.3123(4) & 0.0538 \\ C(22A) & -0.1587(4) & 1.0004(2) & -0.3177(3) & 0.0702 \\ C(22A) & -0.1644(5) & 0.966(3) & -0.2164(4) & 0.0659 \\ C(22A) & -0.1784(5) & 0.976(3) & -0.2164(4) & 0.0699 \\ C(22A) & -0.1784(5) & 0.976(3) & -0.2164(4) & 0.0699 \\ C(22A) & -0.1784(5) & 0.976(3) & -0.2164(4) & 0.0755 \\ C(22A) & -0.1784(5) & 0.8786(2) & -0.1924(5) & 0.0755 \\ C(22A) & -0.1784(5) & 0.986(3) & -0.2164(4) & 0.0755 \\ C(22A) & -0.1784(5) & 0.8786(2) & -0.1924(5) & 0.0755 \\ C(22A) & -0.1784(5) & 0.986(3) & -0.2164(4) & 0.0755 \\ C(22A) & -0.1784(5) & 0.8786(2) & -0.1924(5) & 0.0755 \\ C(22A) & -0.1784(5) & 0.8054(2) & 0.02756 \\ C(22A) & -0.0753(5) & 0.8776(2) & -0.5156(3) & 0.0755 \\ C(22A) & -0.1794(2) & 0.3374(6) & 0.0755 \\ C(22A) & -0.3634(5) & 0.8786(2) & -0.3274(6) & 0.0755 \\ C(22A) & -0.3634(5) & 0.8786(2) & -0.3274(6) & 0.0755 \\ C(22A) & -0.3634(5) & 0.8786(2) & -0.0424(5) & 0.0767 \\ C(23A) & -0.3374(3) & 0.7706(2) & -0.5156(3) & 0.0775 \\ C(22A) & -0.3634(5) & 0.8766(2) & 0.0427(6) & 0.0567 \\ C(32A) & -0.3374(4) & 0.1657(6) & 0.0566 \\ C(31A) & -0.3351(4) & 1.0677(6) & 0.5786(4) & 0.6776 \\ C(32B) & 0.3374($	C(15Ad)	0.3350(4)	1.0833(2)	-0.0866(4)	0.0570	C(15Bf)	0.1394(5)	0.4346(3)	-0.4888(5)	0.0938
$ \begin{array}{c} C(15AG) 0.3496(5) 1.1630(3) -0.1211(6) 0.0852 C(15Bh) 0.1927(5) 0.4994(5) -0.5270(5) 0.0105 \\ C(15Ah) 0.4694(5) 1.0667(3) -0.1216(5) 0.0393 C(15Bh) 0.1688(5) 0.5380(4) -0.4578(5) 0.0930 C(15Ah) 0.4694(5) 1.0578(2) -0.097(4) 0.0572 C(16B) 0.22051(6) 0.4040(5) -0.6210(7) 0.1387 \\ C(15Ah) 0.4476(8) 1.1710(5) -0.1595(8) 0.1371 C(17B) 0.3334(4) 0.6339(3) -0.0972(4) 0.0556 C(16A) 0.1181(4) 1.0416(2) -0.2381(4) 0.0634 N(1BB) 0.4248(3) 0.6133(2) -0.0474(3) 0.0558 C(15A) 0.4275(3) 0.021(4) 0.0556 C(16A) 0.1181(4) 1.0256(2) -0.2814(4) 0.0554 C(19B) 0.4281(4) 0.6639(2) 0.055(2) 0.097(4) 0.0556 C(16A) -0.1557(4) 1.0270(2) -0.3513(3) 0.0047(3) 0.4291(4) 0.6656(2) 0.0977(4) 0.0556 C(20A) -0.1557(4) 1.0000(2) -0.3123(4) 0.0538 O(22B) 0.2223(3) 0.7530(2) 0.0684(4) 0.0651 C(2A) -0.1557(4) 1.0000(2) -0.3123(4) 0.0543 C(23B) 0.2228(3) 0.7530(2) 0.0684(4) 0.0651 C(2A) -0.1557(4) 1.0000(2) -0.3123(4) 0.0543 C(23B) 0.2228(3) 0.7530(2) 0.0684(4) 0.0651 C(2A) -0.1557(4) 1.0000(2) -0.3123(4) 0.0543 C(23B) 0.2228(5) 0.7764(3) 0.1724(7) 0.0827 C(22A) -0.1031(3) 0.9917(2) -0.1377(3) 0.0772 C(24B) 0.33175(6) 0.7764(2) 0.2366(6) 0.0657 C(22A) -0.1631(3) 0.9167(2) -0.1377(3) 0.0772 C(27B) 0.2351(5) 0.7445(2) 0.2366(6) 0.0657 C(23A) -0.1643(5) 0.9658(2) 0.0775 C(26B) 0.2825(5) 0.6815(2) 0.2539(5) 0.0652 C(25A) -0.0633(3) -0.2164(4) 0.0673 C(27B) 0.2351(5) 0.7112(2) 0.1945(5) 0.0672 C(2A) -0.1633(5) 0.8277(3) -0.248(5(5) 0.0725 C(2B) 0.3646(6) 0.7194(2) 0.3546(5) 0.0532 C(25A) -0.0633(3) -0.2516(3) 0.0792 C(2B) 0.3546(6) 0.7194(2) 0.3546(5) 0.0533(6) 0.0727 C(27A) -0.1633(5) 0.8274(3) -0.2346(5) 0.0775 C(2B) 0.3646(6) 0.7194(2) 0.5356(6) 0.0597(6) 0.0534(6) 0.7194(2) 0.5536(6) 0.0597(6) 0.0534(6) 0.7794(6) 0.3546(6) 0.7194(2) 0.5536(6) 0.0597(6) 0.0534(6) 0.7194(2) 0.5536(6) 0.0597(6) 0.0534(6) 0.7794(6) 0.5646(3) 0.2794(6) 0.0534(6) 0.7794(6) 0.5646(3) 0.2694(3) 0.0596(6) 0.0727 C(27B) 0.3536(6) 0.7794(6) 0.073(6) 0.778(6) 0.7780(6) 0.7780(6) 0.7780(6) 0.7780(6) 0.7780(6) 0.7780(6) 0.7780(6) 0.7296(6) 0.1651(6) 0.5596(4) 0.0536(6) 0.7$	C(15Ae)	0.2986(4)	1.1365(3)	-0.0990(5)	0.0759	C(15Bg)	0.1790(5)	0.4476(4)	-0.5432(5)	0.0976
$ \begin{array}{c} C(15AB) \\ C(15B) \\ C(15AB) \\ C(15B) \\ C(15$	C(15Af)	0.3496(5)	1.1630(3)	-0.1211(6)	0.0862	C(15Bh)	0.1927(5)	0.4994(5)	-0.5270(5)	0.1016
$ \begin{array}{c} (124n) \\ (-4974i) \\ (-497$	C(15Ag)	0.4331(6)	1.1400(3)	-0.1344(5)	0.0858	C(15Bi)	0.1689(5)	0.5380(4)	-0.4578(5)	0.0930
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15AII)	0.4094(5)	1.0007(3)	-0.1210(5)	0.0939		0.2051(6)	0.4040(5)	-0.6210(7)	0.1387
C16A 0.1181(3) 1.0416(2) -0.2381(4) 0.0634 C1(18) 0.1281(3) 0.0332(1) 0.0372(1) C17A 0.0201(4) 1.0256(2) -0.2514(4) 0.0544 C(19B) 0.4248(3) 0.6313(2) -0.0411(3) 0.0558 C17A 0.0271(4) 1.0256(2) -0.2514(4) 0.0566 C(20B) 0.4281(4) 0.6858(2) 0.0375(5) 0.0656 C12AA -0.1587(4) 1.0004(2) -0.2154(4) 0.0538 C(22B) 0.2222(3) 0.7530(2) 0.0375(5) 0.0666 C12AA -0.0897(4) 1.0004(2) -0.2154(4) 0.0673 C(22B) 0.2222(3) 0.7445(2) 0.2366(6) 0.6657 C12AA -0.1844(5) 0.9661(3) -0.1617(4) 0.0778 C(22B) 0.2282(5) 0.6313(2) 0.2354(5) 0.0652 C12AA -0.1761(5) 0.9105(3) 0.2164(4) 0.0673 C(27B) 0.2331(5) 0.5860(2) 0.3546(5) 0.0695 C12AA -0.1653(5) 0.8277(3) -0.2495(5) 0	C(15Ai)	0.4876(8)	1 1710(5)	-0.1595(8)	0.0724		0.2020(4)	0.0030(3)	-0.2015(5)	0.0829
C(17A) 0.0201(4) 1.0258(2) -0.2814(4) 0.0544 C(19B) 0.4710(3) 0.6894(2) 0.051(4) 0.0515 N(18A) -0.0476(3) 1.0270(2) -0.3561(3) 0.0606 C(20B) 0.4281(4) 0.6858(2) 0.0957(4) 0.0555 N(18A) -0.1352(3) 1.0137(2) -0.3788(4) 0.0538 C(22B) 0.3233(4) 0.77070(2) 0.0375(5) 0.0689 C(20A) -0.1587(4) 1.0000(2) -0.2154(4) 0.0538 C(22B) 0.2822(3) 0.7530(2) 0.0684(4) 0.0851 C(21A) -0.0892(4) 1.0004(2) -0.2154(4) 0.0538 C(22B) 0.3175(6) 0.7764(3) 0.1724(7) 0.0827 C(22A) -0.1031(3) 0.9917(2) -0.1377(3) 0.0702 C(24B) 0.3087(5) 0.7445(2) 0.2366(6) 0.0657 C(23A) -0.1844(5) 0.9661(3) -0.1617(4) 0.0679 C(25B) 0.2231(5) 0.7445(2) 0.2366(6) 0.0657 C(24A) -0.1731(5) 0.9105(3) -0.2164(4) 0.0699 C(22B) 0.2282(5) 0.6815(2) 0.2539(5) 0.0632 C(25A) -0.0843(5) 0.8787(3) -0.2464(5) 0.0755 C(22B) 0.2931(5) 0.6860(2) 0.3546(5) 0.0792 C(22A) -0.1635(5) 0.8054(2) -0.3246(4) 0.0729 C(22B) 0.2931(5) 0.6866(2) 0.3346(5) 0.0857 C(22A) -0.1653(5) 0.8054(2) -0.3246(4) 0.0729 C(22B) 0.4413(7) 0.7701(3) 0.5033(6) 0.0834 C(28A) -0.2532(5) 0.8534(2) -0.3246(4) 0.0729 C(23B) 0.391(4) 0.7104(2) 0.5053(3) 0.0801 C(28A) -0.3556(5) 0.8156(3) -0.4275(6) 0.0966 C(31B) 0.7007(4) 0.6301(2) 0.2815(4) 0.0592 C(30A) -0.3313(3) 0.7970(2) -0.5156(3) 0.0749 N(232B) 0.6402(3) 0.6489(2) 0.1851(3) 0.0521 C(23A) -0.3556(4) 0.9704(2) -0.6029(4) 0.0600 S(32Ba) 0.7006(1) 0.67549(5) 0.1464(1) 0.0597 N(32A) -0.3092(19) 1.06820(5) -0.5026(1) 0.0580 C(32B) 0.7380(3) 0.7206(1) 0.2230(3) 0.0727 C(23Ab) -0.33514(4) 1.0107(2) -0.5129(3) 0.0490 C(22B) 0.7380(3) 0.7206(1) 0.2230(3) 0.0727 C(32Ab) -0.33514(4) 1.1436(2) -0.5129(3) 0.0495 C(32B) 0.8974(4) 0.657549(5) 0.1464(1) 0.0597 C(32Ab) -0.33514(4) 1.1017(2) -0.5129(3) 0.0477 C(32BB) 0.8974(4) 0.6585(3) 0.0290(4) 0.0773 C(32Ab) -0.33514(4) 1.1436(2) -0.5572(4) 0.0595 C(32B) 0.8974(4) 0.6585(3) 0.0590(4) 0.0723 C(32Ab) -0.33514(4) 1.1436(2) -0.5771(4) 0.0682 C(32Bh) 0.8711(6) 0.5461(3) 0.2312(5) 0.0894(4) 0.0773 C(32Ab) -0.3234(4) 0.1143(2) -0.7766(4) 0.0777 C(32B) 0.3774(4) 0.5586(3) 0.0598(4) 0.0724 C(32Ab) -0.3234(4) 0.1492(2) -0.299(5)	C(16A)	0.1181(4)	1.0416(2)	-0.2381(4)	0.0634	N(18B)	0.3334(4)	0.6339(3)	-0.0972(4)	0.0676
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C(17A)	0.0201(4)	1.0256(2)	-0.2614(4)	0.0544	C(19B)	0.4710(3)	0.6394(2)	0.0512(4)	0.0515
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N(18A)	-0.0476(3)	1.0270(2)	-0.3561(3)	0.0506	C(20B)	0.4281(4)	0.6856(2)	0.0957(4)	0.0556
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C(19A)	-0.1352(3)	1.0137(2)	-0.3789(4)	0.0472	C(21B)	0.3333(4)	0.7070(2)	0.0375(5)	0.0639
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(20A)	-0.1597(4)	1.0000(2)	-0.3123(4)	0.0538	O(22B)	0.2822(3)	0.7530(2)	0.0684(4)	0.0851
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C(21A)	-0.0892(4)	1.0004(2)	-0.2154(4)	0.0543	C(23B)	0.3175(6)	0.7764(3)	0.1724(7)	0.0827
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(22A)	-0.1031(3)	0.9917(2)	-0.1377(3)	0.0702	C(24B)	0.3087(5)	0.7445(2)	0.2366(6)	0.0657
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(23A)	-0.1644(5)	0.9661(3)	-0.1617(4)	0.0778	C(25B)	0.2351(5)	0.7112(2)	0.1945(5)	0.0679
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(25A)	-0.0843(5)	0.8788(2)	-0.2104(4)	0.0609	C(20B)	0.2202(5)	0.0013(2)	0.2039(0)	0.0632
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(26A)	-0.0753(5)	0.8277(3)	-0.2485(5)	0.00755	C(28B)	0.2531(5)	0.0000(2)	0.3340(5)	0.0695
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(27A)	-0.1653(5)	0.8054(2)	-0.3246(4)	0.0729	C(29B)	0.3040(3)	0.7201(3)	0.5033(6)	0.0727
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(28A)	-0.2532(5)	0.8393(3)	-0.3394(5)	0.0792	O(30B)	0.5391(4)	0 7104(2)	0.5059(3)	0.0801
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C(29A)	-0.3450(5)	0.8156(3)	-0.4275(6)	0.0966	C(31B)	0.7007(4)	0.6301(2)	0.2815(4)	0.0596
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	O(30A)	-0.3313(3)	0.7970(2)	-0.5156(3)	0.0749	N(32B)	0.6402(3)	0.6489(2)	0.1851(3)	0.0521
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(31A)	-0.3556(4)	0.9704(2)	-0.6029(4)	0.0600	S(32Ba)	0.7006(1)	0.67549(5)	0.1464(1)	0.0597
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(32A)	-0.3094(3)	1.0107(2)	-0.5129(3)	0.0490	O(328b)	0.7380(3)	0.7206(1)	0.2230(3)	0.0721
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(32Aa)	-0.38021(9)	1.06820(5)	-0.5026(1)	0.0580	O(32Bc)	0.6350(3)	0.6836(2)	0.0467(3)	0.0737
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(32Ab)	-0.3237(3)	1.1017(1)	-0.4138(3)	0.0677	C(32Bd)	0.8022(4)	0.6279(2)	0.1440(4)	0.0617
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(32Ac)	-0.4707(3)	1.0556(2)	-0.5138(3)	0.0785	C(32Be)	0.8891(4)	0.6264(3)	0.2304(4)	0.0716
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(32Ad)	-0.4068(3)	1.0969(2)	-0.6062(4)	0.0517	C(32Bo)	0.9631(5)	0.5664(3)	0.2312(5)	0.0874
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(32AE)	-0.3519(4)	1.1340(2)	-0.5952(4)	0.0595	C(32Bb)	0.8711(5)	0.5491(3)	0.0618(5)	0.0835
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(32Aq)	-0.3714(4)	1.1561(2)	-0.7706(4)	0.0002	C(32Bi)	0.7937(4)	0.5885(3)	0.0590(4)	0.0023
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(32Ab)	-0.4434(4)	1 1030(2)	-0.7798(5)	0.0749	C(32Bi)	1.0416(7)	0.5014(4)	0.1524(8)	0.1273
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(32Ai)	-0.4809(4)	1.0813(2)	-0.6985(5)	0.0700	C(33B)	0.5730(4)	0.6112(2)	0.1071(4)	0.0557
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(32Aj)	-0.4650(6)	1.1652(3)	-0.8576(5)	0.1054	O(34B)	0.1288(3)	0.6233(1)	0.1041(3)	0.0696
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(33A)	-0.2063(3)	1.0149(2)	-0.4885(4)	0.0511	C(35B)	0.1514(5)	0.6449(2)	0.2077(5)	0.0709
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	O(34A)	0.1055(3)	0.8252(2)	-0.1855(3)	0.0789	C(36B)	0.5356(4)	0.6160(2)	0.4299(4)	0.0603
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(35A)	0.0223(6)	0.7940(2)	-0.2290(5)	0.0754	N(37B)	0.3374(3)	0.5190(2)	0.0156(3)	0.0508
N(37A) 0.1341(3) 0.9147(2) -0.3567(3) 0.0515 C(39B) 0.3702(6) 0.7485(2) 0.3371(6) 0.0773 C(38A) 0.0026(4) 1.0137(2) -0.1891(4) 0.0573 O(W) -0.0368(6) 0.6929(3) -0.4980(6) 0.1612 C(39A) -0.2613(5) 0.8894(3) -0.2904(5) 0.0835 C(1) 0.246(1) 0.3001(6) 0.139(1) 0.1760 C(1B) 0.5600(4) 0.6660(2) 0.4427(4) 0.0596 C(2) 0.234(1) 0.2430(6) 0.131(2) 0.1560 C(2B) 0.6125(4) 0.6709(2) 0.3938(4) 0.0626 O(3) 0.153(1) 0.3292(6) 0.909(2) 0.2939(2) 0.2939(2)	C(36A)	-0.2239(4)	0.8103(2)	-0.5760(4)	0.0577	C(38B)	0.2852(4)	0.6808(3)	-0.0598(5)	0.0769
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(37A)	0.1341(3)	0.9147(2)	-0.3567(3)	0.0515	C(39B)	0.3702(6)	0.7485(2)	0.3371(6)	0.0773
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(38A)	0.0026(4)	1.0137(2)	-0.1891(4)	0.0573		-0.0368(6)	0.6929(3)	-0.4960(6)	0.1612
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(39A) C(1B)	-0.2013(5)	0.8660(2)	-0.2904(5)	0.0835		0.240(1)	0.3001(6)	0.139(1)	0.1760
	C(2B)	0.6125(4)	0.6709(2)	0.3938(4)	0.0626	0(3)	0.153(1)	0.3292(6)	0.090(2)	0.2299

6H, OH), 7.00 (s, 6H, Aryl-H), 7.60 (s, 3H, Aryl-H). $-^{13}$ C-NMR (90 MHz, [D₆]DMSO): $\delta = 64.00$, 68.79, 104.69, 126.57, 137.12, 163.11, 165.73.

destilliertem Thionylchlorid versetzt. Man läßt auf Raumtemp. kommen und erhitzt dann 3 h bei 80 °C. Anschließend wird das überschüssige Thionylchlorid abdestilliert und der Rückstand mit kaltgesättigter K₂CO₃-Lösung auf pH 9 eingestellt. Die Lösung wird viermal mit Dichlormethan extrahiert, die vereinigten Extrakte

1,3,5-Tris{[2,6-bis(chlormethyl)-4-pyridinyloxy]methyl}benzol (7): Unter Eiskühlung werden 3.9 g (6.75 mmol) 6 mit 90 ml frisch werden i. Vak. bis zur Trockne eingeengt, und der Rückstand wird durch säulenchromatographische Trennung an Kieselgel (63–100 µm, Eluent: Dichlormethan/Methanol 20:1, v/v) gereinigt; Ausb. 2.84 g (61%), Schmp. 150–151 °C, $R_{\rm f} = 0.4$ (CH₂Cl₂/Methanol 20:1, v/v. – MS (70 eV): m/z (%) = 687.0164 (8) [M⁺], ber. 687.0183. – ¹H-NMR (200 MHz, CDCl₃): $\delta = 4.61$ (s, 12H, CH₂Cl), 5.20 (s, 6H, CH₂O), 7.04 (s, 6H, Aryl-H), 7.49 (s, 3H, Aryl-H). – ¹³C-NMR (90 MHz, CDCl₃): $\delta = 46.48$, 69.59, 108.78, 126.63, 136.68, 158.22, 166.38.

 $\begin{array}{rl} C_{30}H_{27}Cl_6N_3O_3\cdot 1 \ H_2O\ (708.3) & Ber.\ C\ 50.87\ H\ 4.13\ N\ 5.79\\ & Gef.\ C\ 51.20\ H\ 3.89\ N\ 6.01 \end{array}$

Makrocyclus 2: 500 mg (0.82 mmol) 7 in 40 ml trockenem DMF werden bei 80°C unter N2 während 1 h zu einer Lösung von 419.4 mg (2.16 mmol) 8 in 100 ml trockenem DMF getropft. Man läßt 2 h bei dieser Temperatur rühren, fügt nochmals 419.4 mg (2.16 mmol) festes Sulfonamidnatriumsalz 8 hinzu, läßt weitere 12 h rühren, dann auf Raumtemp. abkühlen und engt das Lösungsmittel bis auf etwa 20 ml ein. Die verbleibende Lösung wird mit 20 ml Methanol versetzt, der ausfallende farblose Feststoff wird abfiltriert und getrocknet. Anschließend wird in wenig Dichlormethan/Methanol (20:1, v/v) aufgenommen, kurz zum Sieden erhitzt und bei Raumtemp. aufbewahrt. Das ausgefallene Produkt wird abfiltriert und getrocknet; Ausb. 185.8 mg (23%), Schmp. > 300 °C. - MS (FAB): m/z (%) = 985.4 (98) [M⁺ + H]. - ¹H-NMR (200 MHz, CDCl₃): $\delta = 2.39$ (s, 9H, CH₃), 3.42 (d, ²J = 15 Hz, 6H, CH₂N), 4.41 (d, ${}^{2}J = 15$ Hz, 6H, CH₂N), 5.23 (s, 6H, CH₂O), 6.6 (s, 6H, Aryl-H), 7.12 (s, 3H, Aryl-H), 7.23 (d, ${}^{3}J = 9.5$ Hz, 6H, Aryl-H), 7.60 (d, ${}^{3}J = 9.5$ Hz, 6H, Aryl-H). - 13 C-NMR (90 MHz, $[D_6]DMSO$: $\delta = 23.25, 53.06, 72.64, 116.21, 129.67, 130.52, 132.88,$ 133.14, 138.54, 149.13, 155.34, 173.44.

Abb. 4. Perspektivische Darstellung des Moleküls 2 mit Bezeichnung der Atome

Röntgenstrukturanalyse von 2: Die Züchtung des Kristalls erfolgte durch Dampfdiffusion von Ethanol in eine Lösung von 2 in Ameisensäure (98–100%). Die Struktur wurde mit direkten Methoden gelöst (SHELXS)⁹⁾ und wurde einer Kaskaden-Block-Matrix (in drei Blocks) unterzogen. Mit Ausnahme der Wasserstoffatome, die mit gemeinsamen isotropen Temperaturfaktoren (U = 0.08) in stereochemisch sinnvolle Positionen konstruiert wurden (C-H-Entfernung 1Å), wurden alle Atome anisotrop verfeinert. Das fehlgeordnete Ethanolmolekül wurde als idealisierte, starre Gruppe mit isotropen Temperaturfaktoren behandelt.

Kristalldaten für 2: zwei Moleküle je $C_{51}H_{48}N_6O_9S_3$, $M_{tot} =$ 2002.37 gmol $^{-1}$, ein H₂O und ein fehlgeordnetes Molekül Ethanol (Besetzung 0.5) in einer asymmetrischen Einheit, Kristallgröße $0.25 \times 0.30 \times 0.50$ mm, triklin, Raumgruppe P1 (Nr. 2), a =15.322(6), b = 26.076(4), c = 15.171(10) Å, $\alpha = 105.86(3)$, $\beta =$ 116.79(4) und $\gamma = 75.73(3)^\circ$, V = 5260(4) Å³, Z = 2, $d_{\text{ber}} = 1.264$ g cm⁻³, F(000) = 2104, Enraf-Nonius-CAD4-Diffraktometer, Meßmethode ω -2 Θ (Meßbereich in Grad: 0.60 + 0.14 tan Θ), 2 Θ = 100° (h: $0 \rightarrow 15$, k: $-25 \rightarrow 25$, l: $-15 \rightarrow 15$), Cu-K_a-Strahlung ($\lambda =$ 1.5418 Å), gemessene Reflexe 10572, unabhängige beobachtete Reflexe 8140 mit $I > 3\sigma I$, $2\Theta_{max} = 100^{\circ}$, empirische Absorptionskorrektion⁸⁾ [μ (Cu K_{α}) = 1.746 mm⁻¹] mit Minimum- und Maximum-Korrekturkoeffizienten 0.867 und 1.250; 1324 verfeinerte Parameter, Parameter/ F_o -Verhältnis = 6.15, R = 0.0728 und R_w = 0.0885 [$w = 1/\sigma^2(F_o)$], Tukey-Prince-Gewichtung (drei Parameter: 12.2, 3.64, 9.12), Restelektronendichte 0.43 eÅ⁻³. Es wurden die Programme CRYSTALS¹⁰⁾ und PLUTO¹¹⁾ benutzt. Atomkoordinaten vgl. Tab. 2, Bezeichnung der Atome Abb. 4.

CAS-Registry-Nummern

- 2: 135075-18-2 / 3: 19872-91-4 / 4: 18226-42-1 / 5: 135075-19-3 / 6: 135075-20-6 / 7: 135075-21-7 / 8: 18522-92-4
- ¹⁾ F. Vögtle, B. Dung, J. Incl. Phenomena 6 (1988) 429; F. Vögtle, L. Wambach, Tetrahedron Lett. 26 (1985) 1483; I. Tabushi, Top. Curr. Chem. 113 (1983) 145.
- ² A. P. West, Jr., D. van Engen, R. A. Pascal, Jr., J. Am. Chem. Soc. 111 (1989) 6847; J. A. Bryant, C. B. Knobler, D. J. Cram, *ibid.* 112 (1990) 1254; J. A. Bryant, J. L. Ericson, D. J. Cram, *ibid.* 112 (1990) 1255.
- ³⁾ A. Fischer, W. J. Galloway, J. Vaughan, J. Chem. Soc. 1964, 3591.
- ⁴⁾ D. J. Cram, S. J. Keipert, C. B. Knobler, *Tetrahedron* 43 (1987) 4861.
 ⁹⁾ F. Bottino, M. Di Grazin, P. Finoschiaro, F. P. Franzel, A.
- ⁵⁾ F. Bottino, M. Di Grazia, P. Finocchiaro, F. R. Fronczek, A. Mamo, S. Pappalardo, J. Org. Chem. 53 (1988) 3521.
- ⁶⁾ F. Vögtle, Chem. Ber. 106 (1973) 717.
- ⁷⁾ L. Fibel, P. Spoerri, J. Am. Chem. Soc. **70** (1948) 3908; J. S. Bradshaw, J. Org. Chem. **50** (1985) 4865.
- ⁸⁾ N. Walker, D. Stuart, Acta Crystallogr., Sect. A, **39** (1983) 158. ⁹⁾ G. M. Sheldrick in Crystallographic Computing 3, S. 175, Oxford
- University Press, Oxford, England 1985. ¹⁰⁾ B. Carruthers, D. Watkin, CRYSTALS, Chemical Crystallogra-
- phy Laboratory, Oxford, England 1990.
 W. Motherwell, W. Clegg, PLUTO 78, University of Cambridge, Cambridge, England 1978.

[127/91]